

• Lock-Based Protocols

• Timestamp-Based Protocols

• Validation-Based Protocols

• Multiple Granularity

• Multiversion Schemes

• Deadlock Handling

• Insert and Delete Operations

• Concurrency in Index Structures

• A lock is a mechanism to control concurrent access to a

data item

• Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as

well as
 written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock

is
 requested using lock-S instruction.

• Lock requests are made to concurrency-control

manager. Transaction can proceed only after request is

granted.

• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the
requested lock is compatible with locks already held on the
item by other transactions

• Any number of transactions can hold shared locks on an
item, but if any transaction holds an exclusive on the item
no other transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is
made to wait till all incompatible locks held by other
transactions have been released. The lock is then granted.

• Example of a transaction performing locking:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

• Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the read
of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all
transactions while requesting and releasing locks. Locking
protocols restrict the set of possible schedules.

• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to

wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to

wait for T4 to release its lock on A.

• Such a situation is called a deadlock.

• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

• The potential for deadlock exists in most locking

protocols. Deadlocks are a necessary evil.

• Starvation is also possible if concurrency control

manager is badly designed. For example:

• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock

on the same item.

• The same transaction is repeatedly rolled back due to deadlocks.

• Concurrency control manager can be designed to

prevent starvation.

• This is a protocol which ensures conflict-serializable

schedules.

• Phase 1: Growing Phase

• transaction may obtain locks

• transaction may not release locks

• Phase 2: Shrinking Phase

• transaction may release locks

• transaction may not obtain locks

• The protocol assures serializability. It can be proved that

the transactions can be serialized in the order of their

lock points (i.e. the point where a transaction acquired

its final lock).

• Two-phase locking does not ensure freedom from
deadlocks

• Cascading roll-back is possible under two-phase

locking. To avoid this, follow a modified protocol called

strict two-phase locking. Here a transaction must

hold all its exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter: here all

locks are held till commit/abort. In this protocol

transactions can be serialized in the order in which

they commit.

• There can be conflict serializable schedules that cannot

be obtained if two-phase locking is used.

• However, in the absence of extra information (e.g.,

ordering of access to data), two-phase locking is needed

for conflict serializability in the following sense:

 Given a transaction Ti that does not follow two-phase

locking, we can find a transaction Tj that uses two-phase

locking, and a schedule for Ti and Tj that is not conflict

serializable.

• Two-phase locking with lock conversions:

 – First Phase:

• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

 – Second Phase:

• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still relies on

the programmer to insert the various locking

instructions.

• A transaction Ti issues the standard read/write

instruction, without explicit locking calls.

• The operation read(D) is processed as:

 if Ti has a lock on D

 then

 read(D)
 else

 begin

 if necessary wait until no other
 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)
 end

• write(D) is processed as:

 if Ti has a lock-X on D
 then
 write(D)
 else
 begin

 if necessary wait until no other trans. has any lock on D,

 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D

 write(D)
 end;

• All locks are released after commit or abort

• A Lock manager can be implemented as a separate

process to which transactions send lock and unlock

requests

• The lock manager replies to a lock request by sending a

lock grant messages (or a message asking the

transaction to roll back, in case of a deadlock)

• The requesting transaction waits until its request is

answered

• The lock manager maintains a datastructure called a

lock table to record granted locks and pending requests

• The lock table is usually implemented as an in-memory

hash table indexed on the name of the data item being

locked

• Black rectangles indicate granted

locks, white ones indicate waiting

requests

• Lock table also records the type of

lock granted or requested

• New request is added to the end of the

queue of requests for the data item,

and granted if it is compatible with all

earlier locks

• Unlock requests result in the request

being deleted, and later requests are

checked to see if they can now be

granted

• If transaction aborts, all waiting or

granted requests of the transaction are

deleted

• lock manager may keep a list of locks

held by each transaction, to implement

this efficiently

